Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:4j43xz2f2gv25nk5 > Characterization of...

Characterization of the MRI patient exposure environment and exposure assessment methods for magnetic fields in MRI scanners / Jennifer Frankel.

Frankel, Jennifer, 1981- (författare)
Umeå universitet Institutionen för strålningsvetenskaper (utgivare)
Alternativt namn: Umeå University Department of Radiation Sciences
ISBN 9789178555024
Publicerad: Umeå : Department of Radiation Sciences, Umeå University, 2021
Engelska 49 sidor (PDF)
Serie: Umeå University medical dissertations, 0346-6612 ; New Series, 2125
Läs hela texten (Fritt tillgänglig via Umeå universitet)
Läs hela texten (Fritt tillgänglig via Umeå universitet)
  • E-bokAvhandling(Diss. (sammanfattning) Umeå : Umeå universitet, 2021)
Sammanfattning Ämnesord
Stäng  
  • Magnetic resonance imaging (MRI) has become one of the most common imaging modalities available in modern medicine, and it is an indispensable diagnostic tool thanks to the unparalleled soft-tissue contrast and high image resolution. It is also a unique exposure environment consisting of a complex mix of magnetic fields. During an MRI scan, the patient is simultaneously exposed to a strong static magnetic field, a fast-switching gradient magnetic field, and a pulsed radiofrequency (RF) magnetic field. Transient acute effects, such as nerve excitation and tissue heating, are well known and limited by universal safety guidelines. Long-term health effects related to MRI exposure have, however, not been scientifically established, and no interaction mechanisms have been verified, despite a growing body of research on electromagnetic field exposure. Further epidemiological and experimental research on MRI exposure has been recommended but the lack of a common definition of dose or exposure metric makes evaluation of past research and the design of future experiments difficult. The objectives of this thesis were to characterize the MRI patient exposure environment in terms of the magnetic fields involved, suggest relevant exposure metrics, and introduce exposure assessment methods suitable for epidemiological and experimental research on MRI and long-term health effects. In Paper I, we discussed the MRI exposure environment and its complexity and gave an overview of the current scientific situation. In Paper II, we investigated the exposure variability between different MRI sequences and suggested patient-independent exposure metrics that describe different characteristics of the magnetic field exposure, including mean, peak, and threshold values. In Paper III, we presented three exposure assessment methods, specifically suited to the complex MRI exposure environment: a measurement-based method, a calculation-based method, and a proxy method. Papers I and II showed that MRI exams are not homogenous in terms of exposure, and exposure variability exists between the individual sequences that comprise an exam. Differences in mean exposure between sequences were several-fold, peak exposure differences up to 30-fold, and differences in threshold exposure were in some cases more than 100-fold. Furthermore, within-sequence exposure variability, related to the parameter adjustments that can be made at the scanner console before the start of a scan, gave rise to 5-to-8-fold exposure increases. Paper III showed that magnetic field models could be used to approximate the exposure at arbitrary locations inside the scanner, with slight underestimation of gradient field metrics and large variability in some RF field metrics. With improvements in accuracy and efficiency, the method could become a useful exposure assessment tool for in vitro and in vivo research as well as clinical work on medical implant safety. Our search for suitable exposure metric proxies resulted in a limited selection with low correlation between proxies and their counterpart metrics, but, with further development, the proxy method has the potential to allow for much needed exposure classification relevant to large-scale epidemiological research. The work in this thesis has contributed to increased awareness of the unique MRI exposure environment, the characteristics of the magnetic fields involved, and the inherent exposure variability in MRI exams. The metrics and methods presented are specifically suited to exposure assessment of the unique MRI environment, and may contribute to improved research quality by allowing for meaningful comparisons between study results and for experimental conditions to be easily replicated in future studies. 
  • Magnetisk resonanstomografi (MR), som är en av de vanligaste medicinska avbildningsmetoderna idag, är ett oumbärligt diagnostiskt verktyg tack vare den oöverträffade mjukvävnadskontrasten och höga bildupplösningen. MR-kameran är också en unik exponeringsmiljö bestående av en komplex blandning av magnetfält med olika frekvenser och fältstyrkor. Under en vanlig MR-undersökning exponeras patienten för ett starkt statiskt magnetfält på 1,5 eller 3 Tesla, ett snabbt växlande gradientmagnetfält och ett pulsat radiofrekvent (RF) magnetfält. Gradientfältet kan ibland generera en pirrande känsla i huden på armarna och benen och RF-fältet kan orsaka vävnadsuppvärmning. Dessa övergående effekter är välkända och begränsas av allmänna säkerhetsriktlinjer.  Långsiktiga hälsoeffekter relaterade till MR-exponering är dock inte vetenskapligt fastställda och det finns inga vedertagna interaktionsmekanismer. Det finns en hel del forskning på magnetfältsexponering och biologiska effekter, men resultaten är blandade och svåra att tyda. Till skillnad från joniserande strålning (används i bl.a. röntgenundersökningar), som vi vet kan skada DNA-molekylerna i våra celler och som medför en ökad risk att utveckla cancer vid alltför höga doser, så har vi inga etablerade mått på dos och exponering när det gäller låg- och radiofrekventa magnetfält. Därför kan kvaliteten på exponerings-bedömningarna skilja betydligt mellan olika forskningsstudier, vilket innebär att det är svårt att jämföra resultat från olika studier och ofta omöjligt att reproducera och verifiera tidigare forskningsresultat. Ytterligare epidemiologisk och experimentell forskning om MR-exponering behövs, men för att kunna genomföra den på ett meningsfullt sätt behövs tydliga exponeringsmått och metoder för exponeringsbedömning som är anpassade till den komplexa blandning av magnetfält som finns i MR-kameran. Syftet med denna avhandling var att karakterisera MR-patientens exponerings-miljö med avseende på de tidsvarierande magnetfälten, föreslå lämpliga exponeringsmått och presentera exponeringsbedömningsmetoder som är relevanta för epidemiologisk och experimentell forskning om MR och långsiktiga hälsoeffekter. I artikel I diskuterade vi MR-kamerans exponeringsmiljö och dess komplexitet och gav en översikt av det nuvarande vetenskapliga läget gällande MR och exponering. I artikel II undersökte vi hur exponeringen kan variera mellan de olika bildtagningssekvenserna som ingår i en MR-undersökning, och föreslog patient-oberoende exponeringsmått (olika typer av medelvärden, maxvärden och tröskelvärden) för att beskriva magnetfältens egenskaper. I artikel III presenterade vi tre metoder för att bedöma exponering, särskilt lämpade för den komplexa MR-exponeringsmiljön: en metod för mätningar av magnetfälten inne i kameran, en metod som simulerar kamerans magnetfält, och en metod för att identifiera mer lättillgängliga magnetfältsrelaterade parametrar som korrelerar starkt med de egentliga exponeringsmåtten. I artiklar I och II visade vi att MR-undersökningar inte är homogena med avseende på exponering, så det går inte att enkelt klassificera en undersökning baserat på hur länge den pågår eller vilken kroppsdel som avbildas. Exponeringen kan variera betydligt mellan de olika sekvenserna som ingår ett undersöknings-protokoll. För vissa exponeringsmått är det bara några procents skillnad mellan olika sekvenser, medan det i andra fall kan vara mer än 100-faldig skillnad i exponering. Dessutom fann vi att exponeringen för en enskild sekvens kan varieras genom att MR-kamerans inställningar justeras inför en bildtagning. Detta innebär att det finns väldig många variabler som påverkar exponeringen i en MR-undersökning, och en medvetenhet om detta är viktigt om vi ska kunna genomföra meningsfulla exponeringsbedömningar.  I artikel III visade vi hur simulerade magnetfält kan användas för att beräkna exponeringen på godtyckliga platser inuti MR-kameran. Modellen av gradient-fältet var stabil och fungerade bra för olika exponeringsmått, trots en liten underskattning av exponeringen. RF-fältets exponering visade sig vara svårare att simulera och resultaten varierade mer i jämförelsen med uppmätta värden. Med förbättringar i noggrannhet och effektivitet kan metoden bli ett användbart verktyg för exponeringsbedömning i framtida in vitro- och in vivo-studier samt i kliniska säkerhetsbedömningar, till exempel vid utvärdering av medicinska implantat. Jakten på lämpliga ersättningsparametrar för magnetfältens exponeringsmått resulterade i ett begränsat urval med relativt låg korrelation mellan parametrar och motsvarande mätvärden, så sökandet fortsätter. Med fortsatt utveckling har den här metoden potential att möjliggöra välbehövlig exponeringsklassificering som är relevant för storskalig epidemiologisk forskning. Denna avhandling har belyst MR-kamerans unika exponeringsmiljö med fokus på de tidsvarierande magnetfältens egenskaper, och de många variabler som påverkar exponeringen under en MR-undersökning. De exponeringsmått och bedömningsmetoder som presenterats i detta arbete är särskilt lämpade för den unika exponeringsmiljö som finns i MR-kameror, och kan bidra till förbättrad forskningskvalitet genom att möjliggöra meningsfulla jämförelser mellan olika studiers resultat och upprepning av experimentella förhållanden i framtida studier. 

Ämnesord

Time Factors  (MeSH)
Magnetic Resonance Imaging  -- methods (MeSH)
Magnetic Resonance Imaging  -- adverse effects (MeSH)
Electromagnetic Fields  -- adverse effects (MeSH)
Radiation Exposure  -- analysis (MeSH)
Environmental Exposure  -- analysis (MeSH)
Radiology, Nuclear Medicine and Medical Imaging  (hsv)
Radiologi och bildbehandling  (hsv)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

electromagnetic fields
exposure assessment
magnetic resonance imaging
switched gradient fields
radiofrequency fields
exposure metrics

Klassifikation

616.07548 (DDC)
Vea (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i norra Sverige (1)

Ange som favorit

Sök vidare

Hjälp
Fler titlar av
Frankel, Jennifer, 1 ...
Umeå universitet Ins ...
Fler titlar om
Time Factors
Magnetic Resonance Imaging
Magnetic Resonance I ...
och methods
Magnetic Resonance Imaging
Magnetic Resonance I ...
och adverse effects
Electromagnetic Fields
Electromagnetic Fiel ...
och adverse effects
Radiation Exposure
Radiation Exposure
och analysis
Environmental Exposure
Environmental Exposu ...
och analysis
visa fler...
Radiology, Nuclear M ...
Radiologi och bildbe ...
visa färre...
Fler titlar i denna genre
government publicati ...
Serie
Fler delar
channel record
Fler delar
Även utgiven tryckt
Characterization of ...

Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy