Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:3crdc0lh18mnxkdk > Autotaxin-Lysophosp...

Autotaxin-Lysophosphatidic Acid Signaling Contributed to Obesity-Induced Insulin Resistance in Muscle and Impairs Mitochondrial Metabolism [Elektronisk resurs]

D'Souza, K. (författare)
Nzirorera, C. (författare)
Cowie, A.M. (författare)
Paramel Varghese, Geena, 1985- (författare)
Trivedi, P. (författare)
Eichmann, T.O. (författare)
Biswas, D. (författare)
Touaibia, M. (författare)
Morris, A.J. (författare)
Aidinis, V. (författare)
Kane, D.A. (författare)
Pulinilkunnil, T. (författare)
Kienesberger, P.C. (författare)
Cardiovascular research center (medarbetare)
Publicerad: American Society for Biochemistry and Molecular Biology, 2018
Engelska.
Ingår i: Journal of Lipid Research. - 0022-2275. ; 59:10, 1805-1817
Läs hela texten
Läs hela texten
Läs hela texten
  • E-artikel/E-kapitel
Sammanfattning Ämnesord
Stäng  
  • Autotaxin (ATX) is an adipokine that generates the bioactive lipid, lysophosphatidic acid (LPA). ATX-LPA signaling has been implicated in diet-induced obesity and systemic insulin resistance. However, it remains unclear whether the ATX-LPA pathway influences insulin function and energy metabolism in target tissues, particularly skeletal muscle, the major site of insulin-stimulated glucose disposal. The objective of this study was to test whether the ATX-LPA pathway impacts tissue insulin signaling and mitochondrial metabolism in skeletal muscle during obesity. Male mice with heterozygous ATX deficiency (ATX +/-) were protected from obesity, systemic insulin resistance, and cardiomyocyte dysfunction following high-fat high-sucrose (HFHS) feeding. HFHS-fed ATX +/- mice also had improved insulin-stimulated AKT phosphorylation in white adipose tissue, liver, heart, and skeletal muscle. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. Preserved insulin-stimulated glucose transport in muscle from HFHS fed ATX +/- mice was associated with improved mitochondrial pyruvate oxidation in the absence of changes in fat oxidation and ectopic lipid accumulation. Similarly, incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. incubation with LPA decreased insulin-stimulated AKT phosphorylation and mitochondrial energy metabolism in C2C12 myotubes at baseline and following palmitate-induced insulin resistance. Taken together, our results suggest that the ATX-LPA pathway contributes to obesity-induced insulin resistance in metabolically relevant tissues. Our data also suggest that LPA directly impairs skeletal muscle insulin signaling and mitochondrial function. 

Ämnesord

Medical and Health Sciences  (hsv)
Medicin och hälsovetenskap  (hsv)
Medical and Health Sciences  (hsv)
Basic Medicine  (hsv)
Physiology  (hsv)
Medicin och hälsovetenskap  (hsv)
Medicinska och farmaceutiska grundvetenskaper  (hsv)
Fysiologi  (hsv)
Hälso- och sjukvårdsforskning  (oru)
Health and Medical Care Research  (oru)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

Metabolism
insulin resistance
Inställningar Hjälp

Beståndsinformation saknas

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy