Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:g020mvzldcd6fp5h > Learning representa...

  • Chen, Kunru,1993 (författare)

Learning representations for forklift activity recognition [Elektronisk resurs]

  • E-bokAvhandlingEngelska2024

Förlag, utgivningsår, omfång ...

  • Publicerad:Halmstad :Publicerad:Halmstad University Press,Publicerad:2024
  • 33 sidor

Nummerbeteckningar

  • LIBRIS-ID:g020mvzldcd6fp5h
  • ISBN:9789189587540
  • Ogiltigt nummer / annan version:9789189587557
  • https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-54111uri

Kompletterande språkuppgifter

  • Språk:engelska

Ingår i deldatabas

Anmärkningar

  • Härtill 5 uppsatser
  • Ekonomie doktorsexamen
  • degree of Doctor in Philosophy
  • Diss. (sammanfattning), 2024
  • gratis
  • Machine Activity Recognition (MAR) is a research topic that focuses on the development of data-driven methods to improve productivity monitoring. The application and the perspective of MAR research jointly influence the diffi- culty of a MAR problem. Unlike previous MAR works, which have studied construction machinery from the viewpoint of the user, this project focuses on logistics equipment from the viewpoint of the original equipment manufac- turer. In terms of the application, forklift trucks have flexible functions and complex usage. The former is an intrinsic characteristic, as forklifts are me- chanically agile, and the latter is an extrinsic factor, as forklift usage can vary greatly with different drivers, loads, work shifts, and warehouse environments. As for the standpoint, manufacturers have customers who use their products all over the world. Studying a single machine or machines in a single site, i.e. the conventional MAR setting, cannot provide a general understanding of the equipment usage. Therefore, existing MAR methods with external sensory data and only supervised learning techniques are impractical in this case. This thesis investigates learning representation-based methods for recog- nizing forklift routine activities using on-board sensory signals. Three methods are developed to capture important data features to overcome the challenges of forklift MAR. First, by pre-training autoencoders with unlabeled data and then fine-tuning them with pseudo-labeled data, discriminative features can be ex- tracted. Classifiers built on these features can outperform conventional MAR solutions that use only the labeled data. Second, training gated recurrent unit networks to recognize activities in different contexts can help to learn a repre- sentation that captures activities and their transitions, which further improves the MAR result. Third, implementing domain adversarial-training neural net- works with pseudo-labeled data can essentially compensate for the limited la- beled data from source domains, leading to representations that are informative for more than one domain. In addition, testing the full method on a real truck has demonstrated the applicability of the proposed method and the feasibility of an online MAR solution.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Högskolan i HalmstadAkademin för informationsteknologi (utgivare)

Sammanhörande titlar

  • Del av/supplement till:channel record
  • Annan version:Annat format9789189587557

Internetlänk

Länkade data-URI:er (test)

  • https://libris.kb.se/cw10l55v95qkq8sc#it (Chen, Kunru, 1993 aut)
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy