Probability and Statistics for Computer Science / by David Forsyth.
-
Forsyth, David. (författare)
-
SpringerLink (Online service)
- ISBN 9783319644103
- Publicerad: Cham : Springer International Publishing : 2018
- Engelska XXIV, 367 p. 124 illus., 84 illus. in color.
- Relaterad länk:
-
http://dx.doi.org/10... (Table of Contents / Abstracts)
Innehållsförteckning
Sammanfattning
Ämnesord
Stäng
- 1 Notation and conventions -- 2 First Tools for Looking at Data -- 3 Looking at Relationships -- 4 Basic ideas in probability -- 5 Random Variables and Expectations -- 6 Useful Probability Distributions -- 7 Samples and Populations -- 8 The Significance of Evidence -- 9 Experiments -- 10 Inferring Probability Models from Data -- 11 Extracting Important Relationships in High Dimensions -- 12 Learning to Classify -- 13 Clustering: Models of High Dimensional Data -- 14 Regression -- 15 Markov Chains and Hidden Markov Models -- 16 Resources.
- This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning. With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features: • A treatment of random variables and expectations dealing primarily with the discrete case. • A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains. • A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing. • A chapter dealing with classification, explaining why it’s useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors. • A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems. • A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis. • A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals. Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know. Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.
Ämnesord
- Computer science. (LCSH)
- Mathematical statistics. (LCSH)
- Computer simulation. (LCSH)
- Statistics. (LCSH)
- Computer Science.
- Probability and Statistics in Computer Science.
- Simulation and Modeling.
- Statistics and Computing/Statistics Programs.
Klassifikation
- QA276-280 (LCC)
- COM077000 (ämneskategori)
- 005.55 (DDC)
- Pu (kssb/8 (machine generated))
Inställningar
Hjälp
Titeln finns på 9 bibliotek.
Ange som favorit
-
Mälardalens universitet, Digitala resurser (Mdhd)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Tillgänglig för användare inom Mälardalens högskola) (fulltext) (Springer Computer Science eBooks 2018 English/International)
Öppettider, adress m.m.
Ange som favorit
-
Stockholms universitetsbibliotek, Digitala resurser (Hdig)Ange som favorit
-
-
Läs hela (Tillgänglig för användare inom Stockholms universitet) (Ebook Central Perpetual, DDA and Subscription Titles:Full Text)
Öppettider, adress m.m.
-
Kungliga Tekniska högskolan, E-resurser (Tdig)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Springer) (Online access for KTHB)
Öppettider, adress m.m.
Ange som favorit
-
Högskolan i Jönköping, E-resurser (JonE)Ange som favorit
-
Titeln i bibliotekets lokala katalogGet it
-
-
Läs hela (Online access for JON) (fulltext) (Springer eBooks)
Öppettider, adress m.m.
-
Linköpings universitetsbibliotek, E-resurser (LiUd)Ange som favorit
-
Bibliotekets lokala katalog
-
-
Läs hela (Extern tillgång endast anställda och studenter vid LiU) (Springer Computer Science eBooks 2018 English/International)
Öppettider, adress m.m.
Ange som favorit
-
Göteborgs universitetsbibliotek, E-resurser (Gdix)Ange som favorit
-
Bibliotekets lokala katalogFind@GU
-
-
Läs hela (Tillgänglig för Göteborgs universitet / Online access for the University of Gothenburg) (Springer eBooks:Full Text)
Öppettider, adress m.m.
-
Chalmers tekniska högskola, E-resurser (Zdig)Ange som favorit
-
Bibliotekets lokala katalog
-
-
Läs hela (Online access for Chalmers) (Springer Computer Science eBooks 2018 English/International)
Öppettider, adress m.m.
Ange som favorit
-
Lunds universitets bibliotek, Digitala resurser (Ldix)Ange som favorit
-
Titeln i bibliotekets lokala katalog
-
-
Läs hela (Online access for Lund University) (Springer Nature Complete eBooks)
Utlånad?Öppettider, adress m.m.
-
Malmö universitetsbibliotek, E-resurser (Maud)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Online access for MAU) (Springer Computer Science eBooks 2018 English/International) (fulltext)
Öppettider, adress m.m.