Sök i LIBRIS databas



Sökning: onr:19973915 > Deep learning /

Deep learning / Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

Goodfellow, Ian (författare)
Bengio, Yoshua (författare)
Courville, Aaron (författare)
ISBN 9780262035613
Publicerad: Cambridge, MA : MIT Press, [2016]
Copyright: 2016
Engelska xxii, 775 pages
Serie: Adaptive computation and machine learning
  • Bok
Innehållsförteckning Sammanfattning Ämnesord
  • 1. Introduction -- PART I. Applied Math and Machine Learning Basics -- 2. Linear Algebra -- 3. Probability and Information Theory -- 4. Numerical Computation -- 5. Machine Learning Basics -- PART II. Deep Networks: Modern Practices -- 6. Deep Feedforward Networks -- 7. Regularization for Deep Learning -- 8. Optimization for Training Deep Models -- 9. Convolutional Networks -- 10. Sequence Modeling: Recurrent and Recursive Nets -- 11. Practical Methodology -- 12. Applications -- PART III. Deep Learning Research -- 13. Linear Factor Models -- 14. Autoencoders -- 15. Representation Learning -- 16. Structured Probabilistic Models for Deep Learning -- 17. Monte Carlo Methods -- 18. Confronting the Partition Function -- 19. Approximate Inference -- 20. Deep Generative Models. 
  • Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors. 


Maskininlärning  (sao)
Machine learning  (LCSH)
Machine learning  (lcsh)


Q325.5 (LCC)
006.31 (DDC)
Pud (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 22 bibliotek. 

Bibliotek i norra Sverige (4)

Ange som favorit

Bibliotek i Mellansverige (5)

Ange som favorit

Bibliotek i Stockholmsregionen (2)

Ange som favorit

Bibliotek i östra Sverige (2)

Ange som favorit

Bibliotek i västra Sverige (3)

Ange som favorit

Bibliotek i södra Sverige (6)

Ange som favorit

Sök utanför LIBRIS

Fel i posten?
Teknik och format
Sök utifrån
LIBRIS söktjänster

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy