Data Mining [Elektronisk resurs] The Textbook / by Charu C. Aggarwal.
-
Aggarwal, Charu C. (författare)
-
SpringerLink (Online service)
- ISBN 9783319141428
- Publicerad: Cham : Springer International Publishing : 2015
- Engelska XXIX, 734 p. 180 illus., 7 illus. in color.
- Relaterad länk:
-
http://dx.doi.org/10... (Table of Contents / Abstracts)
Innehållsförteckning
Sammanfattning
Ämnesord
Stäng
- Introduction to Data Mining -- Data Preparation -- Similarity and Distances -- Association Pattern Mining -- Association Pattern Mining: Advanced Concepts -- Cluster Analysis -- Cluster Analysis: Advanced Concepts -- Outlier Analysis -- Outlier Analysis: Advanced Concepts -- Data Classification -- Data Classification: Advanced Concepts -- Mining Data Streams -- Mining Text Data -- Mining Time-Series Data -- Mining Discrete Sequences -- Mining Spatial Data -- Mining Graph Data -- Mining Web Data -- Social Network Analysis -- Privacy-Preserving Data Mining.
- This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago.
Ämnesord
- Computer science. (LCSH)
- Data mining. (LCSH)
- Optical pattern recognition. (LCSH)
- Computer Science.
- Data Mining and Knowledge Discovery.
- Pattern Recognition.
Klassifikation
- QA76.9.D343 (LCC)
- COM021030 (ämneskategori)
- 006.312 (DDC)
- Pud (kssb/8 (machine generated))
Inställningar
Hjälp
Titeln finns på 8 bibliotek.
Ange som favorit
-
Mittuniversitetet, Digitala biblioteket (Miun)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Online access for MIU) (Springer Nature Complete eBooks) (fulltext)
Öppettider, adress m.m.
Ange som favorit
-
Mälardalens universitet, Digitala resurser (Mdhd)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Tillgänglig för användare inom Mälardalens högskola) (fulltext) (SpringerLink Books - AutoHoldings)
Öppettider, adress m.m.
-
Örebro universitetsbibliotek, Digitala resurser (Odig)Ange som favorit
-
-
Läs hela (Tillgänglig inom Örebro universitet och externt för studenter och anställda vid universitetet) (fulltext) (SpringerLink Books Computer Science Without Lecture Notes 2015)
Öppettider, adress m.m.
Ange som favorit
-
Stockholms universitetsbibliotek, Digitala resurser (Hdig)Ange som favorit
-
-
Läs hela (Tillgänglig för användare inom Stockholms universitet) (SpringerLink Books - AutoHoldings:Full Text)
Öppettider, adress m.m.
-
Kungliga Tekniska högskolan, E-resurser (Tdig)Ange som favorit
-
Bibliotekets webbplats
-
-
Läs hela (Springer) (Online access for KTHB)
Öppettider, adress m.m.
Ange som favorit
-
Högskolan i Jönköping, E-resurser (JonE)Ange som favorit
-
Titeln i bibliotekets lokala katalogGet it
-
-
Läs hela (Online access for JON) (fulltext) (Springer eBooks)
Öppettider, adress m.m.
-
Linköpings universitetsbibliotek, E-resurser (LiUd)Ange som favorit
-
Bibliotekets lokala katalog
-
-
Läs hela (Extern tillgång endast anställda och studenter vid LiU) (Springer Computer Science eBooks 2015 English/International)
Öppettider, adress m.m.
Ange som favorit
-
Högskolan i Borås, Biblioteket, Digitala resurser (Hibd)Ange som favorit
-
Bibliotekets lokala katalog
-
-
Läs hela (Tillgänglig för användare inom Högskolan i Borås) (fulltext) (SpringerLink Books Computer Science Without Lecture Notes 2015)
Öppettider, adress m.m.