Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:16717946 > Understanding machi...

Understanding machine learning : from theory to algorithms / Shai Shalev-Shwartz, Shai Ben-David.

Shalev-Shwartz, Shai (författare)
Ben-David, Shai (författare)
ISBN 9781107057135
Publicerad: New York, NY : Cambridge University Press, 2014
Engelska xvi, 397 p.
  • Bok
Innehållsförteckning Sammanfattning Ämnesord
Stäng  
  • Machine generated contents note: 1. Introduction; Part I. Foundations: 2. A gentle start; 3. A formal learning model; 4. Learning via uniform convergence; 5. The bias-complexity tradeoff; 6. The VC-dimension; 7. Non-uniform learnability; 8. The runtime of learning; Part II. From Theory to Algorithms: 9. Linear predictors; 10. Boosting; 11. Model selection and validation; 12. Convex learning problems; 13. Regularization and stability; 14. Stochastic gradient descent; 15. Support vector machines; 16. Kernel methods; 17. Multiclass, ranking, and complex prediction problems; 18. Decision trees; 19. Nearest neighbor; 20. Neural networks; Part III. Additional Learning Models: 21. Online learning; 22. Clustering; 23. Dimensionality reduction; 24. Generative models; 25. Feature selection and generation; Part IV. Advanced Theory: 26. Rademacher complexities; 27. Covering numbers; 28. Proof of the fundamental theorem of learning theory; 29. Multiclass learnability; 30. Compression bounds; 31. PAC-Bayes; Appendix A. Technical lemmas; Appendix B. Measure concentration; Appendix C. Linear algebra.
  • "Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides an extensive theoretical account of the fundamental ideas underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics of the field, the book covers a wide array of central topics that have not been addressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for an advanced undergraduate or beginning graduate course, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics, and engineering"-- 

Ämnesord

Algoritmer  (sao)
Artificiell intelligens  (sao)
Maskininlärning  (sao)
Machine learning  (LCSH)
Algorithms  (LCSH)
Artificial intelligence  (LCSH)
Algorithms  (LCSH)
Machine learning  (LCSH)

Klassifikation

006.31 (DDC)
68T05 (msc)
Pud (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 7 bibliotek. 

Bibliotek i Mellansverige (2)

Ange som favorit

Bibliotek i östra Sverige (1)

Ange som favorit

Bibliotek i västra Sverige (3)

Ange som favorit

Bibliotek i södra Sverige (1)

Ange som favorit
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy