Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:12919899 > Optical properties ...

Optical properties of nanoparticle systems : Mie and beyond / Michael Quinten.

Quinten, Michael. (författare)
ISBN 978-3-527-41043-9 (hbk)
Weinheim [Germany] : Wiley-VCH, cop. 2011.
Engelska xiv, 488 p.
  • Bok
Innehållsförteckning Ämnesord
Stäng  
  • Machine generated contents note: 1. Introduction -- 2. Nanoparticle Systems and Experimental Optical Observables -- 2.1. Classification of Nanoparticle Systems -- 2.2. Stability of Nanoparticle Systems -- 2.3. Extinction, Optical Density, and Scattering -- 2.3.1. Role of the Particle Material Data -- 2.3.2. Role of the Particle Size -- 2.3.3. Role of the Particle Shape -- 2.3.4. Role of the Particle Concentration -- 2.3.4.1. Dilute Systems -- 2.3.4.2. Closely Packed Systems -- 3. Interaction of Light with Matter - The Optical Material Function -- 3.1. Classical Description -- 3.1.1. Harmonic Oscillator Model -- 3.1.2. Extensions of the Harmonic Oscillator Model -- 3.1.3. Drude Dielectric Function -- 3.2. Quantum Mechanical Concepts -- 3.2.1. Hubbard Dielectric Function -- 3.2.2. Interband Transitions -- 3.3. Tauc-Lorentz and OJL Models -- 3.4. Kramers-Kronig Relations and Penetration Depth -- 4. Fundamentals of Light Scattering by an Obstacle -- 4.1. Maxwell's Equations and the Helmholtz Equation -- 4.2. Electromagnetic Fields -- 4.3. Boundary Conditions -- 4.4. Poynting's Law and Cross-sections -- 4.5. Far-Field and Near-Field -- 4.6. Incident Electromagnetic Wave -- 4.7. Rayleigh's Approximation for Small Particles - The Dipole Approximation -- 4.8. Rayleigh-Debye-Gans Approximation for Vanishing Optical Contrast -- 5. Mie's Theory for Single Spherical Particles -- 5.1. Electromagnetic Fields and Boundary Conditions -- 5.2. Cross-sections, Scattering Intensities, and Related Quantities -- 5.3. Resonances -- 5.3.1. Geometric Resonances -- 5.3.2. Electronic Resonances and Surface Plasmon Polaritons -- 5.3.2.1. Electronic Resonances -- 5.3.2.2. Surface Plasmon Polariton Resonances -- 5.3.2.3. Multiple Resonances -- 5.3.3. Longitudinal Plasmon Resonances -- 5.4. Optical Contrast -- 5.5. Near-Field -- 5.5.1. Some Further Details -- 6. Application of Mie's Theory -- 6.1. Drude Metal Particles (Al, Na, K) -- 6.2. Noble Metal Particles (Cu, Ag, Au) -- 6.2.1. Calculations -- 6.2.2. Experimental Examples -- 6.2.2.1. Colloidal Au and Ag Suspensions -- 6.2.2.2. Gold and Silver Nanoparticles in Glass -- 6.2.2.3. Copper Nanoparticles in Glass and Silica -- 6.2.2.4. AgxAu1-x Alloy Nanoparticles in Photosensitive Glass -- 6.2.2.5. Silver Aerosols -- 6.2.2.6. Further Experiments -- 6.3. Catalyst Metal Particles (Pt, Pd, Rh) -- 6.4. Magnetic Metal Particles (Fe, Ni, Co) -- 6.5. Rare Earth Metal Particles (Sc, Y, Er) -- 6.6. Transition Metal Particles (V, Nb, Ta) -- 6.7. Summary of Metal Particles -- 6.8. Semimetal Particles (TiN, ZrN) -- 6.9. Semiconductor Particles (Si, SiC, CdTe, ZnSe) -- 6.9.1. Calculations -- 6.9.2. Experimental Examples -- 6.9.2.1. Si Nanoparticles in Polyacrylene -- 6.9.2.2. Quantum Confinement in CdSe Nanoparticles -- 6.10. Carbonaceous Particles -- 6.11. Absorbing Oxide Particles (Fe2O3, Cr2O3, Cu2O3, CuO) -- 6.11.1. Calculations -- 6.11.2. Experimental Examples -- 6.11.2.1. Aerosols of Fe2O3 -- 6.11.2.2. Aerosols of Cu2O and CuO -- 6.11.2.3. Colloidal Fe2O3 nanoparticles -- 6.12. Transparent Oxide Particles (SiO2, Al2O3, CeO2, TiO2) -- 6.13. Particles with Phonon Polaritons (MgO, NaCl, CaF2) -- 6.14. Miscellaneous Nanoparticles (ITO, LaB6, EuS) -- 7. Extensions of Mie's Theory -- 7.1. Coated Spheres -- 7.1.1. Calculations -- 7.1.1.1. Metallic Shells on a Transparent Core -- 7.1.1.2. Oxide Shells on Metal and Semiconducting Core Particles -- 7.1.2. Experimental Examples -- 7.1.2.1. Ag-Au and Au-Ag Core-Shell Particles -- 7.1.2.2. Multishell Nanoparticles of Ag and Au -- 7.1.2.3. Optical Bistability in Silver-Coated CdS Nanoparticles -- 7.1.2.4. Ag and Au Aerosols with Salt Shells -- 7.1.2.5. Further Experiments -- 7.2. Supported Nanoparticles -- 7.3. Charged Nanoparticles -- 7.4. Anisotropic Materials -- 7.4.1. Dichroism -- 7.4.2. Field-Induced Anisotropy -- 7.4.3. Gradient-Index Materials -- 7.4.4. Optically Active Materials -- 7.5. Absorbing Embedding Media -- 7.5.1. Calculations -- 7.5.2. Experimental Examples -- 7.5.2.1. Absorption of Scattered Light in Ag and Au Colloids -- 7.5.2.2. Ag and Fe Nanoparticles in Fullerene Film -- 7.6. Inhomogeneous Incident Waves -- 7.6.1. Gaussian Beam Illumination -- 7.6.2. Evanescent Waves from Total Internal Reflection -- 8. Limitations of Mie's Theory-Size and Quantum Size Effects in Very Small Nanoparticles -- 8.1. Boundary Conditions-the Spill-Out Effect -- 8.2. Free Path Effect in Nanoparticles -- 8.3. Chemical Interface Damping-Dynamic Charge Transfer -- 9. Beyond Mie's Theory I-Nonspherical Particles -- 9.1. Spheroids and Ellipsoids -- 9.1.1. Spheroids (Ellipsoids of Revolution) -- 9.1.1.1. Electromagnetic Fields -- 9.1.1.2. Scattering Coefficients -- 9.1.1.3. Cross-sections -- 9.1.1.4. Resonances -- 9.1.1.5. Numerical Examples -- 9.1.1.6. Extensions -- 9.1.2. Ellipsoids (Rayleigh Approximation) -- 9.1.3. Numerical Examples for Ellipsoids -- 9.1.3.1. Metal Particles -- 9.1.3.2. Semimetal and Semiconductor Particles -- 9.1.3.3. Carbonaceous Particles -- 9.1.3.4. Particles with Phonon Polaritons -- 9.1.3.5. Miscellaneous Particles -- 9.1.4. Experimental Results -- 9.1.4.1. Prolate Spheroidal Silver Particles in Fourcault Glass -- 9.1.4.2. Plasma Polymer Films with Nonspherical Silver Particles -- 9.1.4.3. Further Experiments -- 9.2. Cylinders -- 9.2.1. Electromagnetic Fields and Scattering Coefficients -- 9.2.2. Efficiencies and Scattering Intensities -- 9.2.3. Resonances -- 9.2.4. Extensions -- 9.2.5. Numerical Examples -- 9.2.5.1. Metal Particles -- 9.2.5.2. Semimetal and Semiconductor Particles -- 9.2.5.3. Carbonaceous Particles -- 9.2.5.4. Oxide Particles -- 9.2.5.5. Particles with Phonon Polaritons -- 9.2.5.6. Miscellaneous Particles -- 9.3. Cubic Particles -- 9.3.1. Theoretical Considerations -- 9.3.2. Numerical Examples -- 9.3.2.1. Metal Particles -- 9.3.2.2. Semimetal and Semiconductor Particles -- 9.3.2.3. Particles with Phonon Polaritons -- 9.3.2.4. Miscellaneous Particles -- 9.4. Numerical Methods -- 9.4.1. Discrete Dipole Approximation -- 9.4.2. T-Matrix Method or Extended Boundary Condition Method -- 9.4.3. Other Numerical Methods -- 9.4.3.1. Point Matching Method -- 9.4.3.2. Discretized Mie Formalism -- 9.4.3.3. Generalized Multipole Technique -- 9.4.3.4. Finite Difference Time Domain Technique -- 9.5. Application of Numerical Methods to Nonspherical Nanoparticles -- 9.5.1. Nonmetallic Nanoparticles -- 9.5.2. Metallic Nanoparticles -- 10. Beyond Mie's Theory II-The Generalized Mie Theory -- 10.1. Derivation of the Generalized Mic Theory -- 10.2. Resonances -- 10.3. Common Results -- 10.3.1. Influence of Shape -- 10.3.2. Influence of Length -- 10.3.3. Influence of Interparticle Distance -- 10.3.4. Enhancement of Scattering and Extinction -- 10.3.5. Problem of Convergence -- 10.4. Extensions of the Generalized Mie Theory -- 10.4.1. Incident Beam -- 10.4.2. Nonspherical Particles -- 11. Generalized Mie Theory Applied to Different Systems -- 11.1. Metal Particles -- 11.1.1. Calculations -- 11.1.2. Experimental Results -- 11.1.2.1. Extinction of Light in Colloidal Gold and Silver Systems -- 11.1.2.2. Total Scattering of Light by Aggregates -- 11.1.2.3. Angle-Resolved Light Scattering by Nanoparticle Aggregates -- 11.1.2.4. PTOBD on Aggregated Gold and Silver Nanocomposites -- 11.1.2.5. Light-Induced van der Waals Attraction -- 11.1.2.6. Coalescence of Nanoparticles -- 11.1.2.7. Further Experiments with Gold and Silver Nanoparticles -- 11.2. Semimetal and Semiconductor Particles -- 11.3. Nonabsorbing Dielectrics -- 11.4. Carbonaceous Particles -- 11.5. Particles with Phonon Polaritons -- 11.6. Miscellaneous Particles -- 11.7. Aggregates of Nanoparticles of Different Materials -- 11.8. Optical Particle Sizing -- 11.9. Stochastically Distributed Spheres -- 11.10. Aggregates of Spheres and Numerical Methods -- 11.10.1. Applications of the Discrete Dipole Approximation -- 11.10.2. Applications of the T-Matrix approach -- 11.10.3. Other Methods -- 12. Densely Packed Systems -- 12.1. Two-Flux Theory of Kubelka and Munk -- 12.2. Applications of the Kubelka-Munk Theory -- 12.2.1. Dense Systems of Color Pigments: Cr2O3, Fe2O3, and Cu2O -- 12.2.2. Dense Systems of White Pigments: SiO2 and TiO2 -- 12.2.3. Dense Systems of ZrN and TiN Nanoparticles -- 12.2.4. Dense Systems of Silicon Nanoparticles -- 12.2.5. Dense Systems of IR Absorbers: ITO and LaB6 -- 12.2.6. Dense Systems of Noble Metals: Ag and Au -- 12.2.7. Lycurgus Cup -- 12.3. Improvements of the Kubelka-Munk Theory -- 13. Near-Field and SERS -- 13.1. Waveguiding Along Particle Chains -- 13.2. Scanning Near-Field Optical Microscopy -- 13.3. SERS with Aggregates -- 14. Effective Medium Theories -- 14.1. Theoretical Results for Dielectric Nanoparticle Composites -- 14.2. Theoretical Results for Metal Nanoparticle Composites -- 14.3. Experimental Examples.

Ämnesord

Nanoparticles  -- Optical properties. (LCSH)

Klassifikation

QC176.8.N35 (LCC)
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i södra Sverige (1)

Ange som favorit

Sök vidare

Hjälp
Fler titlar av
Quinten, Michael.
Fler titlar om
Nanoparticles
Nanoparticles
och Optical properties.

Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy