Optical properties of nanoparticle systems : Mie and beyond / Michael Quinten.
-
Quinten, Michael. (författare)
- ISBN 978-3-527-41043-9 (hbk)
- Weinheim [Germany] : Wiley-VCH, cop. 2011.
- Engelska xiv, 488 p.
Innehållsförteckning
Ämnesord
Stäng
- Machine generated contents note: 1. Introduction -- 2. Nanoparticle Systems and Experimental Optical Observables -- 2.1. Classification of Nanoparticle Systems -- 2.2. Stability of Nanoparticle Systems -- 2.3. Extinction, Optical Density, and Scattering -- 2.3.1. Role of the Particle Material Data -- 2.3.2. Role of the Particle Size -- 2.3.3. Role of the Particle Shape -- 2.3.4. Role of the Particle Concentration -- 2.3.4.1. Dilute Systems -- 2.3.4.2. Closely Packed Systems -- 3. Interaction of Light with Matter - The Optical Material Function -- 3.1. Classical Description -- 3.1.1. Harmonic Oscillator Model -- 3.1.2. Extensions of the Harmonic Oscillator Model -- 3.1.3. Drude Dielectric Function -- 3.2. Quantum Mechanical Concepts -- 3.2.1. Hubbard Dielectric Function -- 3.2.2. Interband Transitions -- 3.3. Tauc-Lorentz and OJL Models -- 3.4. Kramers-Kronig Relations and Penetration Depth -- 4. Fundamentals of Light Scattering by an Obstacle -- 4.1. Maxwell's Equations and the Helmholtz Equation -- 4.2. Electromagnetic Fields -- 4.3. Boundary Conditions -- 4.4. Poynting's Law and Cross-sections -- 4.5. Far-Field and Near-Field -- 4.6. Incident Electromagnetic Wave -- 4.7. Rayleigh's Approximation for Small Particles - The Dipole Approximation -- 4.8. Rayleigh-Debye-Gans Approximation for Vanishing Optical Contrast -- 5. Mie's Theory for Single Spherical Particles -- 5.1. Electromagnetic Fields and Boundary Conditions -- 5.2. Cross-sections, Scattering Intensities, and Related Quantities -- 5.3. Resonances -- 5.3.1. Geometric Resonances -- 5.3.2. Electronic Resonances and Surface Plasmon Polaritons -- 5.3.2.1. Electronic Resonances -- 5.3.2.2. Surface Plasmon Polariton Resonances -- 5.3.2.3. Multiple Resonances -- 5.3.3. Longitudinal Plasmon Resonances -- 5.4. Optical Contrast -- 5.5. Near-Field -- 5.5.1. Some Further Details -- 6. Application of Mie's Theory -- 6.1. Drude Metal Particles (Al, Na, K) -- 6.2. Noble Metal Particles (Cu, Ag, Au) -- 6.2.1. Calculations -- 6.2.2. Experimental Examples -- 6.2.2.1. Colloidal Au and Ag Suspensions -- 6.2.2.2. Gold and Silver Nanoparticles in Glass -- 6.2.2.3. Copper Nanoparticles in Glass and Silica -- 6.2.2.4. AgxAu1-x Alloy Nanoparticles in Photosensitive Glass -- 6.2.2.5. Silver Aerosols -- 6.2.2.6. Further Experiments -- 6.3. Catalyst Metal Particles (Pt, Pd, Rh) -- 6.4. Magnetic Metal Particles (Fe, Ni, Co) -- 6.5. Rare Earth Metal Particles (Sc, Y, Er) -- 6.6. Transition Metal Particles (V, Nb, Ta) -- 6.7. Summary of Metal Particles -- 6.8. Semimetal Particles (TiN, ZrN) -- 6.9. Semiconductor Particles (Si, SiC, CdTe, ZnSe) -- 6.9.1. Calculations -- 6.9.2. Experimental Examples -- 6.9.2.1. Si Nanoparticles in Polyacrylene -- 6.9.2.2. Quantum Confinement in CdSe Nanoparticles -- 6.10. Carbonaceous Particles -- 6.11. Absorbing Oxide Particles (Fe2O3, Cr2O3, Cu2O3, CuO) -- 6.11.1. Calculations -- 6.11.2. Experimental Examples -- 6.11.2.1. Aerosols of Fe2O3 -- 6.11.2.2. Aerosols of Cu2O and CuO -- 6.11.2.3. Colloidal Fe2O3 nanoparticles -- 6.12. Transparent Oxide Particles (SiO2, Al2O3, CeO2, TiO2) -- 6.13. Particles with Phonon Polaritons (MgO, NaCl, CaF2) -- 6.14. Miscellaneous Nanoparticles (ITO, LaB6, EuS) -- 7. Extensions of Mie's Theory -- 7.1. Coated Spheres -- 7.1.1. Calculations -- 7.1.1.1. Metallic Shells on a Transparent Core -- 7.1.1.2. Oxide Shells on Metal and Semiconducting Core Particles -- 7.1.2. Experimental Examples -- 7.1.2.1. Ag-Au and Au-Ag Core-Shell Particles -- 7.1.2.2. Multishell Nanoparticles of Ag and Au -- 7.1.2.3. Optical Bistability in Silver-Coated CdS Nanoparticles -- 7.1.2.4. Ag and Au Aerosols with Salt Shells -- 7.1.2.5. Further Experiments -- 7.2. Supported Nanoparticles -- 7.3. Charged Nanoparticles -- 7.4. Anisotropic Materials -- 7.4.1. Dichroism -- 7.4.2. Field-Induced Anisotropy -- 7.4.3. Gradient-Index Materials -- 7.4.4. Optically Active Materials -- 7.5. Absorbing Embedding Media -- 7.5.1. Calculations -- 7.5.2. Experimental Examples -- 7.5.2.1. Absorption of Scattered Light in Ag and Au Colloids -- 7.5.2.2. Ag and Fe Nanoparticles in Fullerene Film -- 7.6. Inhomogeneous Incident Waves -- 7.6.1. Gaussian Beam Illumination -- 7.6.2. Evanescent Waves from Total Internal Reflection -- 8. Limitations of Mie's Theory-Size and Quantum Size Effects in Very Small Nanoparticles -- 8.1. Boundary Conditions-the Spill-Out Effect -- 8.2. Free Path Effect in Nanoparticles -- 8.3. Chemical Interface Damping-Dynamic Charge Transfer -- 9. Beyond Mie's Theory I-Nonspherical Particles -- 9.1. Spheroids and Ellipsoids -- 9.1.1. Spheroids (Ellipsoids of Revolution) -- 9.1.1.1. Electromagnetic Fields -- 9.1.1.2. Scattering Coefficients -- 9.1.1.3. Cross-sections -- 9.1.1.4. Resonances -- 9.1.1.5. Numerical Examples -- 9.1.1.6. Extensions -- 9.1.2. Ellipsoids (Rayleigh Approximation) -- 9.1.3. Numerical Examples for Ellipsoids -- 9.1.3.1. Metal Particles -- 9.1.3.2. Semimetal and Semiconductor Particles -- 9.1.3.3. Carbonaceous Particles -- 9.1.3.4. Particles with Phonon Polaritons -- 9.1.3.5. Miscellaneous Particles -- 9.1.4. Experimental Results -- 9.1.4.1. Prolate Spheroidal Silver Particles in Fourcault Glass -- 9.1.4.2. Plasma Polymer Films with Nonspherical Silver Particles -- 9.1.4.3. Further Experiments -- 9.2. Cylinders -- 9.2.1. Electromagnetic Fields and Scattering Coefficients -- 9.2.2. Efficiencies and Scattering Intensities -- 9.2.3. Resonances -- 9.2.4. Extensions -- 9.2.5. Numerical Examples -- 9.2.5.1. Metal Particles -- 9.2.5.2. Semimetal and Semiconductor Particles -- 9.2.5.3. Carbonaceous Particles -- 9.2.5.4. Oxide Particles -- 9.2.5.5. Particles with Phonon Polaritons -- 9.2.5.6. Miscellaneous Particles -- 9.3. Cubic Particles -- 9.3.1. Theoretical Considerations -- 9.3.2. Numerical Examples -- 9.3.2.1. Metal Particles -- 9.3.2.2. Semimetal and Semiconductor Particles -- 9.3.2.3. Particles with Phonon Polaritons -- 9.3.2.4. Miscellaneous Particles -- 9.4. Numerical Methods -- 9.4.1. Discrete Dipole Approximation -- 9.4.2. T-Matrix Method or Extended Boundary Condition Method -- 9.4.3. Other Numerical Methods -- 9.4.3.1. Point Matching Method -- 9.4.3.2. Discretized Mie Formalism -- 9.4.3.3. Generalized Multipole Technique -- 9.4.3.4. Finite Difference Time Domain Technique -- 9.5. Application of Numerical Methods to Nonspherical Nanoparticles -- 9.5.1. Nonmetallic Nanoparticles -- 9.5.2. Metallic Nanoparticles -- 10. Beyond Mie's Theory II-The Generalized Mie Theory -- 10.1. Derivation of the Generalized Mic Theory -- 10.2. Resonances -- 10.3. Common Results -- 10.3.1. Influence of Shape -- 10.3.2. Influence of Length -- 10.3.3. Influence of Interparticle Distance -- 10.3.4. Enhancement of Scattering and Extinction -- 10.3.5. Problem of Convergence -- 10.4. Extensions of the Generalized Mie Theory -- 10.4.1. Incident Beam -- 10.4.2. Nonspherical Particles -- 11. Generalized Mie Theory Applied to Different Systems -- 11.1. Metal Particles -- 11.1.1. Calculations -- 11.1.2. Experimental Results -- 11.1.2.1. Extinction of Light in Colloidal Gold and Silver Systems -- 11.1.2.2. Total Scattering of Light by Aggregates -- 11.1.2.3. Angle-Resolved Light Scattering by Nanoparticle Aggregates -- 11.1.2.4. PTOBD on Aggregated Gold and Silver Nanocomposites -- 11.1.2.5. Light-Induced van der Waals Attraction -- 11.1.2.6. Coalescence of Nanoparticles -- 11.1.2.7. Further Experiments with Gold and Silver Nanoparticles -- 11.2. Semimetal and Semiconductor Particles -- 11.3. Nonabsorbing Dielectrics -- 11.4. Carbonaceous Particles -- 11.5. Particles with Phonon Polaritons -- 11.6. Miscellaneous Particles -- 11.7. Aggregates of Nanoparticles of Different Materials -- 11.8. Optical Particle Sizing -- 11.9. Stochastically Distributed Spheres -- 11.10. Aggregates of Spheres and Numerical Methods -- 11.10.1. Applications of the Discrete Dipole Approximation -- 11.10.2. Applications of the T-Matrix approach -- 11.10.3. Other Methods -- 12. Densely Packed Systems -- 12.1. Two-Flux Theory of Kubelka and Munk -- 12.2. Applications of the Kubelka-Munk Theory -- 12.2.1. Dense Systems of Color Pigments: Cr2O3, Fe2O3, and Cu2O -- 12.2.2. Dense Systems of White Pigments: SiO2 and TiO2 -- 12.2.3. Dense Systems of ZrN and TiN Nanoparticles -- 12.2.4. Dense Systems of Silicon Nanoparticles -- 12.2.5. Dense Systems of IR Absorbers: ITO and LaB6 -- 12.2.6. Dense Systems of Noble Metals: Ag and Au -- 12.2.7. Lycurgus Cup -- 12.3. Improvements of the Kubelka-Munk Theory -- 13. Near-Field and SERS -- 13.1. Waveguiding Along Particle Chains -- 13.2. Scanning Near-Field Optical Microscopy -- 13.3. SERS with Aggregates -- 14. Effective Medium Theories -- 14.1. Theoretical Results for Dielectric Nanoparticle Composites -- 14.2. Theoretical Results for Metal Nanoparticle Composites -- 14.3. Experimental Examples.
Ämnesord
- Nanoparticles -- Optical properties. (LCSH)
Klassifikation
- QC176.8.N35 (LCC)
Inställningar
Hjälp
Titeln finns på 1 bibliotek.
Ange som favorit