Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:t5x89qmdrzk094vt > Krylov methods for ...

Krylov methods for nonlinear eigenvalue problems and matrix equations [Elektronisk resurs]

Mele, Giampaolo, 1989- (författare)
Jarlebring, Elias (preses)
Vandebril, Raf (opponent)
KTH Skolan för teknikvetenskap (SCI) (utgivare)
KTH Centra (utgivare)
Publicerad: Stockholm : KTH Royal Institute of Technology, 2020
Engelska 57
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Stockholm : Kungliga Tekniska högskolan, 2020)
Sammanfattning Ämnesord
Stäng  
  • Nonlinear eigenvalue problems (NEPs) arise in many fields of science and engineering. Such problems are often defined by large matrices, which have specific structures, such as being sparse, low-rank, etc. Like the linear eigenvalue problem, the eigenvector appears in a linear form, whereas the eigenvalue appears in a nonlinear form. This feature allows for an extension of several methods, which are originally derived for the linear eigenvalue problem, to the nonlinear case. Among these methods, Krylov algorithms have been successfully extended in various ways. These methods are designed to take advantage of the matrix structures mentioned above. In this thesis, we present two Krylov-based methods for solving NEPs: the tensor infinite Arnoldi (TIAR), with its restarting variant, and infinite Lanczos (ILAN). We illustrate the flexibility of TIAR by adapting it for solving a NEP which comes from the study of waves propagating in periodic mediums. Despite the fact that Krylov methods are, in a sense, globally convergent, the convergence to the targeted eigenvalues, in certain cases, may be slow. When an accurate solution is required, the obtained approximations are refined with methods which have higher convergence order, e.g., Newton-like methods, which are also analyzed in this thesis. In the context of eigenvalue computation, the framework used to analyse Newton methods can be combined with the Keldysh theorem in order to better characterize the convergence factor. We also show that several well-established methods, such as residual inverse iteration and Ruhe’s method of successive linear problems, belong to the class of Newton-like methods. In this spirit, we derive a new quasi-Newton method, which is, in terms of convergence properties, equivalent to residual inverse iteration, but does not require the solution of a nonlinear system per iteration. The mentioned methods are implemented in NEP-PACK, which is a registered Julia package for NEPs that we develop. This package consists of: many state-of-the-art, but also well-established, methods for solving NEPs, a vast problem collection, and types and structures to efficiently represent and do computations with NEPs.Many problems in control theory, and many discretized partial differential equations, can be efficiently solved if formulated as matrix equations. Moreover, matrix equations arise in a very large variety of areas as intrinsic problems. In our framework, for certain applications, solving matrix equations is a part of the process of solving a NEP. In this thesis we derive a preconditioning technique which is applicable to linear systems which can be formulate as generalized Sylvester equation. More precisely, we assume that the matrix equation can be formulated as the sum of a Sylvester operator and another term which can be low-rank approximated. Such linear systems arise, e.g., when solving certain NEPs which come from wave propagation problems.We also derive an algorithm, which consists of applying a Krylov method directly to the the matrix equation rather then to the vectorized linear system, that exploits certain structures in the matrix coefficients. 
  • Icke-linjära egenvärdesproblem, förkortat NEP från engelskans nonlinear eigenvalue problem, uppstår inom många områden inom vetenskap och teknik. Sådana problem definieras ofta av stora matriser med specifika strukturer, såsom gleshet, låg rang osv. Liksom det i linjära egenvärdesproblemet är beroendet på egenvektorn linjärt, medan beroendet på egenvärdet är icke-linjärt. Denna egenskap möjliggör en utvidgning av flera metoder, som ursprungligen härleds för det linjära egenvärdesproblemet, till det icke-linjära fallet. Bland dessa metoder har Krylov-metoder framgångsrikt vidareutvecklats på olika sätt. Dessa metoder är utformade för att dra fördel av de ovan nämnda matrisstrukturerna. I den här avhandlingen presenterar vi två Krylov-baserade metoder för att lösa NEP: tensor Infinite Arnoldi (TIAR), med en variant som möjliggör omstart, och Infinite Lanczos (ILAN). Vi illustrerar flexibiliteten i TIAR genom att anpassa den till att lösa en NEP som kommer från studien av vågor som sprider sig i periodiska medier.Även om Krylov-metoder på sätt och vis är globalt konvergenta, kan konvergensen till de önskade egenvärdena i vissa fall vara långsam. När en noggrann lösning erfordras kan de erhållna approximationerna förfinas med metoder som har högre konvergensordning, t.ex. Newton-liknande metoder, som också analyseras i denna avhandling. I detta sammanhang kan ramverket som används för att analysera Newton-metoder kombineras med Keldysh sats för att bättre karakterisera konvergensfaktorn. Vi visar också att flera väletablerade metoder, såsom residual inversiteration och Ruhes metod för successiva linjära problem, tillhör klassen Newton-liknande metoder. I denna anda erhåller vi en ny quasi-Newton metod som motsvarar residual inversiteration, när det gäller konvergensegenskaper, men inte kräver lösning av en olinjär ekvation per iteration.De nämnda metoderna är implementerade i NEP-PACK, som är ett registrerat Julia-paket för NEP som vi har utvecklat. Detta paket består av många nyutvecklade samt väletablerade metoder för att lösa NEP, en stor problemsamling samt typer och strukturer för att effektivt representera och göra beräkningar med NEP.Många problem inom styrteori, samt många diskretiserade partiella differentialekvationer, kan lösas effektivt om de formuleras som matrisekvationer. Dessutom uppstår matrisekvationer som delproblem i ett mycket stort antal områden. I vårt ramverk, är lösning av matrisekvationer en del av processen för att lösa en NEP i vissa tillämpningar. I denna avhandling härleder vi en förkonditioneringsteknik som är tillämplig på vissa linjära system vilka kan formuleras som en generaliserad Sylvesterekvation. Mer exakt antar vi att matrisekvationen kan skrivas som summan av en Sylvesteroperator och en annan term som kan approximeras med en operator med låg rang. Sådana linjära system uppstår, t.ex., vid lösning av vissa NEP som kommer från vågutbredningsproblem. Vi presenterar också en algoritm, som består av att tillämpa en Krylov-metod direkt på matrisekvationen snarare än på det vektoriserade linjära systemet, vilken utnyttjar vissa strukturer i matriskoefficienterna. 

Ämnesord

Natural Sciences  (hsv)
Mathematics  (hsv)
Computational Mathematics  (hsv)
Naturvetenskap  (hsv)
Matematik  (hsv)
Beräkningsmatematik  (hsv)
Numerical Analysis  (kth)
Numerisk analys  (kth)

Genre

government publication  (marcgt)
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy