Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:n0spx3dhlknfd32f > Wisdom of the Crowd...

Wisdom of the Crowd for Fault Detection and Prognosis [Elektronisk resurs]

Fan, Yuantao, 1989- (författare)
Rögnvaldsson, Thorsteinn, 1963- (preses)
Nowaczyk, Sławomir, 1978- (preses)
Fink, Olga (opponent)
Högskolan i Halmstad Akademin för informationsteknologi (utgivare)
ISBN 9789188749437
Publicerad: Halmstad : Halmstad University Press, 2020
Engelska 87
Ingår i:
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning), 2020)
Sammanfattning Ämnesord
Stäng  
  • Monitoring and maintaining the equipment to ensure its reliability and availability is vital to industrial operations. With the rapid development and growth of interconnected devices, the Internet of Things promotes digitization of industrial assets, to be sensed and controlled across existing networks, enabling access to a vast amount of sensor data that can be used for condition monitoring. However, the traditional way of gaining knowledge and wisdom, by the expert, for designing condition monitoring methods is unfeasible for fully utilizing and digesting this enormous amount of information. It does not scale well to complex systems with a huge amount of components and subsystems. Therefore, a more automated approach that relies on human experts to a lesser degree, being capable of discovering interesting patterns, generating models for estimating the health status of the equipment, supporting maintenance scheduling, and can scale up to many equipment and its subsystems, will provide great benefits for the industry.  This thesis demonstrates how to utilize the concept of "Wisdom of the Crowd", i.e. a group of similar individuals, for fault detection and prognosis. The approach is built based on an unsupervised deviation detection method, Consensus Self-Organizing Models (COSMO). The method assumes that the majority of a crowd is healthy; individual deviates from the majority are considered as potentially faulty. The COSMO method encodes sensor data into models, and the distances between individual samples and the crowd are measured in the model space. This information, regarding how different an individual performs compared to its peers, is utilized as an indicator for estimating the health status of the equipment. The generality of the COSMO method is demonstrated with three condition monitoring case studies:  i ) fault detection and failure prediction for a commercial fleet of city buses,  ii ) prognosis for a fleet of turbofan engines and  iii ) finding cracks in metallic material. In addition, the flexibility of the COSMO method is demonstrated with:  i ) being capable of incorporating domain knowledge on specializing relevant expert features;  ii ) able to detect multiple types of faults with a generic data- representation, i.e. Echo State Network;  iii ) incorporating expert feedback on adapting reference group candidate under an active learning setting. Last but not least, this thesis demonstrated that the remaining useful life of the equipment can be estimated from the distance to a crowd of peers.  

Ämnesord

Natural Sciences  (hsv)
Computer and Information Sciences  (hsv)
Information Systems  (hsv)
Naturvetenskap  (hsv)
Data- och informationsvetenskap  (hsv)
Systemvetenskap, informationssystem och informatik  (hsv)

Genre

government publication  (marcgt)
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Övriga bibliotek (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy