Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:gqq8nk07dqfk0tz8 > Decision making und...

Decision making under uncertainty in financial markets : improving decisions with stochastic optimization

Ekblom, Jonas, 1985- (författare)
Blomvall, Jörgen, 1974- (preses)
Kaut, Michal (opponent)
Linköpings universitet. Institutionen för ekonomisk och industriell utveckling (utgivare)
Linköpings universitet Tekniska fakulteten (utgivare)
Publicerad: Linköping : Linköping University, Department of Management and Engineering, 2018
Engelska 1 onlineresurs (xii, 36 sidor)
Serie: Linköping studies in science and technology. Dissertations, 0345-7524 ; 1956
Läs hela texten (Sammanfattning och ramberättelse från Linköping University Electronic Press)
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Linköping : Linköpings universitet, 2018)
Sammanfattning Ämnesord
Stäng  
  • This thesis addresses the topic of decision making under uncertainty, with particular focus on financial markets. The aim of this research is to support improved decisions in practice, and related to this, to advance our understanding of financial markets. Stochastic optimization provides the tools to determine optimal decisions in uncertain environments, and the optimality conditions of these models produce insights into how financial markets work. To be more concrete, a great deal of financial theory is based on optimality conditions derived from stochastic optimization models. Therefore, an important part of the development of financial theory is to study stochastic optimization models that step-by-step better capture the essence of reality. This is the motivation behind the focus of this thesis, which is to study methods that in relation to prevailing models that underlie financial theory allow additional real-world complexities to be properly modeled. The overall purpose of this thesis is to develop and evaluate stochastic optimization models that support improved decisions under uncertainty on financial markets. The research into stochastic optimization in financial literature has traditionally focused on problem formulations that allow closed-form or `exact' numerical solutions; typically through the application of dynamic programming or optimal control. The focus in this thesis is on two other optimization methods, namely stochastic programming and approximate dynamic programming, which open up opportunities to study new classes of financial problems. More specifically, these optimization methods allow additional and important aspects of many real-world problems to be captured. This thesis contributes with several insights that are relevant for both financial and stochastic optimization literature. First, we show that the modeling of several real-world aspects traditionally not considered in the literature are important components in a model which supports corporate hedging decisions. Specifically, we document the importance of modeling term premia, a rich asset universe and transaction costs. Secondly, we provide two methodological contributions to the stochastic programming literature by: (i) highlighting the challenges of realizing improved decisions through more stages in stochastic programming models; and (ii) developing an importance sampling method that can be used to produce high solution quality with few scenarios. Finally, we design an approximate dynamic programming model that gives close to optimal solutions to the classic, and thus far unsolved, portfolio choice problem with constant relative risk aversion preferences and transaction costs, given many risky assets and a large number of time periods. 

Ämnesord

Beslutsfattande  (sao)
Osäkerhet  (sao)
Finansiella marknader  (sao)
Optimering  (sao)
Stokastiska modeller  (sao)
Dynamisk programmering  (sao)
Risk  -- ekonomiska aspekter (sao)
Social Sciences  (hsv)
Economics and Business  (hsv)
Economics  (hsv)
Samhällsvetenskap  (hsv)
Ekonomi och näringsliv  (hsv)
Nationalekonomi  (hsv)
Natural Sciences  (hsv)
Mathematics  (hsv)
Other Mathematics  (hsv)
Naturvetenskap  (hsv)
Matematik  (hsv)
Annan matematik  (hsv)
Risk  (LCSH)
Dynamic programming  (LCSH)
Stochastic models  (LCSH)
Uncertainty  (LCSH)
Decision making  (LCSH)
Mathematical optimization  (LCSH)

Indexterm och SAB-rubrik

Stochastic programming
Approximate dynamic programming
Financial optimization
Portfolio optimization
Corporate hedging
Scenario generation
Importance sampling

Klassifikation

658.4033 (DDC)
Qbabba (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 2 bibliotek. 

Bibliotek i östra Sverige (1)

Ange som favorit

Övriga bibliotek (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy