Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:6j4934th4n014kzv > Introduction to mac...

  • Alpaydin, Ethem(författare)

Introduction to machine learning [Elektronisk resurs] /Ethem Alpaydin.

  • Third edition.
  • E-bokEngelska2014

Förlag, utgivningsår, omfång ...

  • Publicerad:Cambridge, Massachusetts :Publicerad:MIT Press,Publicerad:[2014]
  • Distribuerad:[Piscataqay, New Jersey] :Distribuerad:IEEE Xplore,Distribuerad:[2014]
  • 1 online resource (xxii, 616 pages)illustrations
  • texttxtrdacontent
  • computercrdamedia
  • online resourcecrrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:6j4934th4n014kzv
  • ISBN:0262325748
  • Ogiltigt nummer / annan version:0262028182

Kompletterande språkuppgifter

  • Språk:engelska

Klassifikation

Serie

  • Adaptive computation and machine learning series

Anmärkningar

  • Includes index.
  • Includes bibliographical references and index.
  • Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.
  • The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online). Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Ämnesord och genrebeteckningar

Sammanhörande titlar

  • Annan version:Print:Introduction to machine learning /0-262-02818-2

Seriebiuppslag

  • Adaptive computation and machine learning
Inställningar Hjälp

Titeln finns på 3 bibliotek. 

Bibliotek i norra Sverige (1)

Ange som favorit

Bibliotek i Stockholmsregionen (1)

Ange som favorit

Bibliotek i östra Sverige (1)

Ange som favorit

Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy