Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:6hc1gwl24gn3jnmk > Covariate selection...

Covariate selection and propensity score specification in causal inference [Elektronisk resurs]

Waernbaum, Ingeborg, 1972- (författare)
de Luna, Xavier (preses)
Stanghellini, Elena (opponent)
Umeå universitet Samhällsvetenskapliga fakulteten (utgivare)
Publicerad: Umeå : Statistik, 2008
Engelska.
Serie: Statistical studies, 1100-8989 1100-8989
Ingår i:
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Umeå : Umeå universitet, 2008)
Sammanfattning Ämnesord
Stäng  
  • This thesis makes contributions to the statistical research field of causal inference in observational studies. The results obtained are directly applicable in many scientific fields where effects of treatments are investigated and yet controlled experiments are difficult or impossible to implement. In the first paper we define a partially specified directed acyclic graph (DAG) describing the independence structure of the variables under study. Using the DAG we show that given that unconfoundedness holds we can use the observed data to select minimal sets of covariates to control for. General covariate selection algorithms are proposed to target the defined minimal subsets. The results of the first paper are generalized in Paper II to include the presence of unobserved covariates. Morevoer, the identification assumptions from the first paper are relaxed. To implement the covariate selection without parametric assumptions we propose in the third paper the use of a model-free variable selection method from the framework of sufficient dimension reduction. By simulation the performance of the proposed selection methods are investigated. Additionally, we study finite sample properties of treatment effect estimators based on the selected covariate sets. In paper IV we investigate misspecifications of parametric models of a scalar summary of the covariates, the propensity score. Motivated by common model specification strategies we describe misspecifications of parametric models for which unbiased estimators of the treatment effect are available. Consequences of the misspecification for the efficiency of treatment effect estimators are also studied. 

Ämnesord

Natural Sciences  (hsv)
Mathematics  (hsv)
Probability Theory and Statistics  (hsv)
Naturvetenskap  (hsv)
Matematik  (hsv)
Sannolikhetsteori och statistik  (hsv)
SOCIAL SCIENCES  (svep)
Statistics, computer and systems science  (svep)
Statistics  (svep)
SAMHÄLLSVETENSKAP  (svep)
Statistik, data- och systemvetenskap  (svep)
Statistik  (svep)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

Covariate selection
graphical models
matching
observational studies
treatment effects
unconfoundedness
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Övriga bibliotek (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy