Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:3d6nlnrp1kxwsj67 > Short-Term Traffic ...

Short-Term Traffic Prediction in Large-Scale Urban Networks [Elektronisk resurs]

Cebecauer, Matej, 1986- (författare)
Jenelius, Erik, 1980- (preses)
Burghout, Wilco (preses)
Kulcsár, Balázs (opponent)
Urban Mobility Group (medarbetare)
KTH Skolan för arkitektur och samhällsbyggnad (ABE) (utgivare)
Publicerad: Stockholm : KTH Royal Institute of Technology, 2019
Engelska 21
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Lic.-avh. (sammanfattning) Stockholm : Kungliga Tekniska högskolan, 2019)
Sammanfattning Ämnesord
Stäng  
  • City-wide travel time prediction in real-time is an important enabler for efficient use of the road network. It can be used in traveler information to enable more efficient routing of individual vehicles as well as decision support for traffic management applications such as directed information campaigns or incident management. 3D speed maps have been shown to be a promising methodology for revealing day-to-day regularities of city-level travel times and possibly also for short-term prediction. In this paper, we aim to further evaluate and benchmark the use of 3D speed maps for short-term travel time prediction and to enable scenario-based evaluation of traffic management actions we also evaluate the framework for traffic flow prediction. The 3D speed map methodology is adapted to short-term prediction and benchmarked against historical mean as well as against Probabilistic Principal Component Analysis (PPCA). The benchmarking and analysis are made using one year of travel time and traffic flow data for the city of Stockholm, Sweden. The result of the case study shows very promising results of the 3D speed map methodology for short-term prediction of both travel times and traffic flows. The modified version of the 3D speed map prediction outperforms the historical mean prediction as well as the PPCA method. Further work includes an extended evaluation of the method for different conditions in terms of underlying sensor infrastructure, preprocessing and spatio-temporal aggregation as well as benchmarking against other prediction methods. 

Ämnesord

Engineering and Technology  (hsv)
Civil Engineering  (hsv)
Transport Systems and Logistics  (hsv)
Teknik och teknologier  (hsv)
Samhällsbyggnadsteknik  (hsv)
Transportteknik och logistik  (hsv)
Transportvetenskap  (kth)
Transport Science  (kth)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

travel time prediction
short-term travel time prediction
traffic prediction
clustering
partitioning
spatio-temporal partitioning
large-scale prediction
PPCA
3D speed map
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Övriga bibliotek (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy