Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:22682188 > Computing abelian v...

Computing abelian varieties over finite fields [Elektronisk resurs]

Marseglia, Stefano 1989- (författare)
Bergström, Jonas (preses)
Ritzenthaler, Christophe (opponent)
Stockholms universitet Naturvetenskapliga fakulteten (utgivare)
Algebra och Geometri (medarbetare)
ISBN 978-91-7797-275-4
Stockholm Department of Mathematics, Stockholm University 2018
Engelska 30
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Stockholm : Stockholms universitet, 2018)
Sammanfattning Ämnesord
Stäng  
  • In this thesis we address the problem of developing effective algorithms to compute isomorphism classes of polarized abelian varieties over a finite field and of fractional ideals of an order in a finite product of number fields. There are well-known methods to efficiently compute the classes of invertible ideals of an order in a number field, but not much has previously been known about non-invertible ideals. In Paper I we produce algorithms to compute representatives of all ideal classes of an order in a finite product of number fields. We also extend a theorem of Latimer and MacDuffee about  conjugacy classes of integral matrices. There are equivalences established by Deligne and Centeleghe-Stix between the category of abelian varieties over a finite field and the category of finitely generated free abelian groups with an endomorphism satisfying some easy-to-state axioms, which in certain cases can be described in terms of fractional ideals of orders in finite products of number fields. In Paper II we use this method to produce an algorithm that computes the isomorphism classes of abelian varieties in an isogeny class determined by an ordinary square-free q-Weil polynomial or by a square-free p-Weil polynomial with no real roots (where p denotes a prime and q is a power of a prime). In the ordinary case we also produce an algorithm that computes the polarizations up to isomorphism and the automorphism groups of the polarized abelian varieties. If the polarization is principal, we can compute a period matrix of the canonical lift of the abelian variety. In Paper III we extend the description of the second paper to the case when the Weil polynomial is a power of a square-free polynomial which fulfills the same requirements as in Paper II. In Paper IV we use the results of the second and third papers to study questions related to base-field extension of the abelian varieties over finite fields. 

Ämnesord

Natural Sciences  (hsv)
Mathematics  (hsv)
Algebra and Logic  (hsv)
Naturvetenskap  (hsv)
Matematik  (hsv)
Algebra och logik  (hsv)
matematik  (su)
Mathematics  (su)

Indexterm och SAB-rubrik

abelian varieties
finite fields
period matrices
ideal classes
orders
number fields
integral matrices
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy