Sök i LIBRIS databas



Sökning: onr:22664566 > Genetic Mechanisms ...

Genetic Mechanisms Regulating the Spatiotemporal Modulation of Proliferation Rate and Mode in Neural Progenitors and Daughter Cells during Embryonic CNS Development / Behzad Yaghmaeian Salmani

Yaghmaeian Salmani, Behzad, 1978- (författare)
Alternativt namn: Salmani, Behzad Yaghmaeian, 1978-
Thor, Stefan 1964- (preses)
Jönsson, Jan-Ingvar 1961- (preses)
Mannervik, Mattias (opponent)
Linköpings universitet Institutionen för klinisk och experimentell medicin (utgivare)
Alternativt namn: IKE
Alternativt namn: Linköping University. Department of Clinical and Experimental Medicine
Alternativt namn: Linköping University. Faculty of Health Sciences. Department of Clinical and Experimental Medicine
Linköpings universitet Medicinska fakulteten (utgivare)
Publicerad: Linköping : Department of Clinical and Experimental Medicine, Linköping University, 2018
Engelska 1 onlineresurs (63 sidor)
Serie: Linköping University Medical Dissertations, 0345-0082 ; 1628
Läs hela texten (Sammanfattning och ramberättelse från Linköping University Electronic Press)
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Linköping : Linköpings universitet, 2018)
Sammanfattning Ämnesord
  • The central nervous system (CNS) is a hallmark feature of animals with a bilateral symmetry: bilateria and can be sub-divided into the brain and nerve cord. One of the prominent properties of the CNS across bilateria is the discernible expansion of its anterior part (brain) compared with the posterior one (nerve cord). This evolutionarily conserved feature could be attributed to four major developmental agencies: First, the existence of more anterior progenitors. Second, anterior progenitors are more proliferative. Third, anterior daughter cells, generated by the progenitors, are more proliferative. Forth, fewer cells are removed by programmed cell death (PCD) anteriorly. My thesis has addressed these issues, and uncovered both biological principles and genetic regulatory networks that promote these A-P differences. I have used the Drosophila and mouse embryonic CNSs as model systems. Regarding the 1st issue, while the brain indeed contains more progenitors, my studies demonstrate that this only partly explains the anterior expansion. Indeed, with regard to the 2nd issue, my studies, on both the Drosophila and mouse CNS, demonstrate that anterior progenitors divide more extensively. Concerning the 3rd issue, in Drosophila we identified a gradient of daughter proliferation along the AP axis of the developing CNS with brain daughter cells being more proliferative. Specifically, in the brain, progenitors divide to generate a series of daughter cells that divide once (Type I), to generate two neurons or glia. In contrast, in the nerve cord, progenitors switch during later stages, from first generating dividing daughters to subsequently generating daughters that directly differentiate (Type 0). Hence, nerve cord progenitors undergo a programmed Type I->0 proliferation switch. In the Drosophila posterior CNS, this switch occurs earlier and is more prevalent, contributing to the generation of smaller lineages in the posterior regions. Similar to Drosophila , in the mouse brain we also found that progenitor and daughter cell proliferation was elevated and extended into later developmental stages, when compared to the spinal cord. DNA-labeling experiments revealed faster cycling cells in the brain when compared to the nerve cord, in both Drosophila and mouse. In both Drosophila and mouse, we found that the suppression of progenitor and daughter proliferation in the nerve cord is controlled by the Hox homeotic gene family. Hence, the absence of Hox gene expression in the brain provides a logical explanation for the extended progenitor proliferation and lack of Type I->0 switch. The repression of Hox genes in the brain is mediated by the histonemodifying Polycomb Group complex (PcG), which thereby is responsible for the anterior expansion. With respect to the 4th issue, we found no effect of PCD on anterior expansion in Drosophila , while this cannot be asserted for the mouse embryonic neurodevelopment as there are no genetic tools to abolish PCD effectively in mammals. Taken together, the studies presented in this thesis identified global and evolutionarily-conserved genetic programs that promote anterior CNS expansion, and pave the way for understanding the evolution of size along the anterior-posterior CNS axis. 


Central Nervous System  -- growth & development (MeSH)
Genes, Homeobox  -- genetics (MeSH)
Polycomb-Group Proteins  -- metabolism (MeSH)
Medical and Health Sciences  (hsv)
Basic Medicine  (hsv)
Neurosciences  (hsv)
Medicin och hälsovetenskap  (hsv)
Medicinska och farmaceutiska grundvetenskaper  (hsv)
Neurovetenskaper  (hsv)


573.86 (DDC)
Ug.033 (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 2 bibliotek. 

Bibliotek i östra Sverige (1)

Ange som favorit

Övriga bibliotek (1)

Ange som favorit
Fel i posten?
Teknik och format
Sök utifrån
LIBRIS söktjänster

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy