Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:22108967 > Electronic-structur...

Electronic-structure origin of the anisotropic thermopower of nanolaminated Ti3SiC2 determinedby polarized x-ray spectroscopy and Seebeck measurements [Elektronisk resurs]

Magnuson, Martin (författare)
Mattesini, Maurizio (författare)
Van Nong, Ngo (författare)
Eklund, Per (författare)
Hultman, Lars (författare)
Linköpings universitet Institutionen för fysik, kemi och biologi (utgivare)
Alternativt namn: Linköpings universitet. Institutionen för fysik och mätteknik (tidigare namn)
Alternativt namn: Linköpings universitet. Institutionen för fysik och mätteknik, biologi och kemi (tidigare namn)
Alternativt namn: IFM
Alternativt namn: Engelska : Department of Physics and Measurement Technology, Biology and Chemistry
Alternativt namn: Engelska : Department of Physics, Chemistry and Biology
Linköpings universitet Tekniska högskolan (utgivare)
Alternativt namn: Linköpings universitet. Tekniska fakulteten
Alternativt namn: Linköpings tekniska högskola
Alternativt namn: Tekniska högskolan vid Linköpings universtiet
Alternativt namn: LiTH
Alternativt namn: Linköping University. Institute of Technology
Se även: Universitet i Linköping Tekniska högskolan
American Physical Society 2012
Engelska.
Ingår i: Physical Review B Condensed Matter. - 0163-1829. ; 85, 195134
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
  • E-artikel/E-kapitel
Sammanfattning Ämnesord
Stäng  
  • Nanolaminated materials exhibit characteristic magnetic, mechanical, and thermoelectric properties, withlarge contemporary scientific and technological interest. Here we report on the anisotropic Seebeck coefficient innanolaminated Ti3SiC2 single-crystal thin films and trace the origin to anisotropies in element-specific electronicstates. In bulk polycrystalline form, Ti3SiC2 has a virtually zero Seebeck coefficient over a wide temperaturerange. In contrast, we find that the in-plane (basal ab) Seebeck coefficient of Ti3SiC2, measured on single-crystalfilms, has a substantial and positive value of 4–6 μV/K. Employing a combination of polarized angle-dependentx-ray spectroscopy and density functional theory we directly show electronic structure anisotropy in inherentlynanolaminated Ti3SiC2 single-crystal thin films as a model system. The density of Ti 3d and C 2p states atthe Fermi level in the basal ab plane is about 40% higher than along the c axis. The Seebeck coefficient isrelated to electron and hole-like bands close to the Fermi level, but in contrast to ground state density functionaltheory modeling, the electronic structure is also influenced by phonons that need to be taken into account.Positive contribution to the Seebeck coefficient of the element-specific electronic occupations in the basal planeis compensated by 73% enhanced Si 3d electronic states across the laminate plane that give rise to a negativeSeebeck coefficient in that direction. Strong phonon vibration modes with three to four times higher frequencyalong the c axis than along the basal ab plane also influence the electronic population and themeasured spectra bythe asymmetric average displacements of the Si atoms. These results constitute experimental evidence explainingwhy the average Seebeck coefficient of Ti3SiC2 in polycrystals is negligible over a wide temperature range. Thisallows the origin of anisotropy in physical properties of nanolaminated materials to be traced to anisotropies inelement-specific electronic states. 

Ämnesord

Natural Sciences  (hsv)
Naturvetenskap  (hsv)

Indexterm och SAB-rubrik

MAX-phases
nanolaminates
Seebeck coefficients
x-ray absorption
emission spectroscopy
Inställningar Hjälp

Beståndsinformation saknas

Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy