Increasing Rule Extraction Accuracy by Post-processing GP Trees [Elektronisk resurs]
-
Johansson, Ulf (författare)
-
CEC 2008, Hong Kong, June 1-6, 2008
-
König, Rikard (författare)
-
Löfström, Tuve (författare)
-
Niklasson, Lars (författare)
- Publicerad: IEEE, 2008
- Engelska.
-
Ingår i: Proceedings of the Congress on Evolutionary Computation. ; 3010-3015
-
Läs hela texten
-
Läs hela texten
- Relaterad länk:
-
http://ju.se/ (Värdpublikation)
Sammanfattning
Ämnesord
Stäng
- Genetic programming (GP), is a very general and efficient technique, often capable of outperforming more specialized techniques on a variety of tasks. In this paper, we suggest a straightforward novel algorithm for post-processing of GP classification trees. The algorithm iteratively, one node at a time, searches for possible modifications that would result in higher accuracy. More specifically, the algorithm for each split evaluates every possible constant value and chooses the best. With this design, the post-processing algorithm can only increase training accuracy, never decrease it. In this study, we apply the suggested algorithm to GP trees, extracted from neural network ensembles. Experimentation, using 22 UCI datasets, shows that the post-processing results in higher test set accuracies on a large majority of datasets. As a matter of fact, for two setups of three evaluated, the increase in accuracy is statistically significant.
Ämnesord
- Natural Sciences (hsv)
- Computer and Information Sciences (hsv)
- Naturvetenskap (hsv)
- Data- och informationsvetenskap (hsv)
Genre
- government publication (marcgt)
Indexterm och SAB-rubrik
- genetic programming
- rule extraction
- Computer Science
- Machine Learning
- Data Mining
- data mining
Inställningar
Hjälp
Titeln finns på 1 bibliotek.
Ange som favorit