Sök i LIBRIS databas



Sökning: onr:14557777 > An Introduction to ...

An Introduction to Statistical Learning [Elektronisk resurs] with Applications in R / by Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani.

James, Gareth. (författare)
Witten, Daniela. (författare)
Hastie, Trevor. (författare)
Tibshirani, Robert. (författare)
SpringerLink (Online service) 
ISBN 9781461471387
Publicerad: New York, NY : Springer New York : 2013
Engelska XIV, 426 p. 150 illus., 146 illus. in color.
Serie: Springer Texts in Statistics, 1431-875X ; 103
  • E-bok
Innehållsförteckning Sammanfattning Ämnesord
  • Introduction -- Statistical Learning -- Linear Regression -- Classification -- Resampling Methods -- Linear Model Selection and Regularization -- Moving Beyond Linearity -- Tree-Based Methods -- Support Vector Machines -- Unsupervised Learning -- Index.
  • An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. 


Statistics.  (LCSH)
Mathematical statistics.  (LCSH)
Statistical Theory and Methods. 
Statistics and Computing/Statistics Programs. 
Theoretical, Mathematical and Computational Physics. 
Statistics, general. 


QA276-280 (LCC)
PBT (ämneskategori)
MAT029000 (ämneskategori)
519.5 (DDC)
Thi (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 6 bibliotek. 

Bibliotek i Mellansverige (1)

Ange som favorit

Bibliotek i Stockholmsregionen (2)

Ange som favorit

Bibliotek i västra Sverige (2)

Ange som favorit

Bibliotek i södra Sverige (1)

Ange som favorit
Fel i posten?
Teknik och format
Sök utifrån
LIBRIS söktjänster

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy