Minerals, metals and sustainability : meeting future material needs / W. J. Rankin.
-
Rankin, W. J. (författare)
- ISBN 9780415684590
- Publicerad: Collingwood, Vic. CSIRO Publishing ; c2011.
- Engelska xvi, 419 p.
Innehållsförteckning
Ämnesord
Stäng
- Machine generated contents note: 1. Introduction -- 2. Materials and the materials cycle -- 2.1. Natural resources -- 2.2. Materials, goods and services -- 2.3. material groups -- 2.3.1. Biomass -- 2.3.2. Plastics -- 2.3.3. Metals and alloys -- 2.3.4. Silicates and other inorganic compounds -- 2.4. materials cycle -- 2.5. recyclability of materials -- 2.6. Quantifying the materials cycle -- 2.6.1. Materials and energy balances -- 2.6.2. Material flow analysis -- 2.7. References -- 2.8. Useful sources of information -- 3. introduction to Earth -- 3.1. crust -- 3.2. hydrosphere and biosphere -- 3.2.1. Life on Earth -- 3.2.2. Earth's biomes -- 3.2.3. Ecosystem services -- 3.3. Some implications of the basic laws of science -- 3.3.1. Thermal energy flows to the biosphere and hydrosphere -- 3.3.2. greenhouse effect -- 3.3.3. Sun as driver of both change and order -- 3.4. biogeochemical cycles -- 3.4.1. carbon and oxygen cycles -- 3.4.2. water cycle -- 3.4.3. nitrogen cycle -- 3.4.4. phosphorus cycle -- 3.4.5. sulfur cycle -- 3.5. References -- 3.6. Useful sources of information -- 4. introduction to sustainability -- 4.1. environmental context -- 4.1.1. state of the environment -- 4.1.2. ecological footprint -- 4.1.3. tragedy of the commons -- 4.2. brief history of the idea of sustainability -- 4.2.1. rising public awareness -- 4.2.2. International developments -- 4.2.3. Corporate developments -- 4.3. concepts of sustainable development and sustainability -- 4.3.1. Alternative definitions of sustainability -- 4.3.2. Interpretations of sustainability -- 4.3.3. Responses to the challenge of sustainability -- 4.4. Sustainability frameworks -- 4.4.1. Triple bottom line -- 4.4.2. Eco-efficiency -- 4.4.3. Natural Step -- 4.4.4. Natural Capitalism -- 4.4.5. Biomimicry -- 4.4.6. five capitals model -- 4.4.7. Green chemistry and green engineering -- 4.4.8. Putting the frameworks into context -- 4.5. model of sustainability -- 4.6. References -- 4.7. Useful sources of information -- 5. Mineral resources -- 5.1. Formation of the Earth -- 5.2. geological time scale -- 5.3. Formation of the crust -- 5.3.1. Continental crust -- 5.3.2. Oceanic crust -- 5.3.3. distribution of elements -- 5.4. Minerals and rocks -- 5.4.1. Mineral classes -- 5.4.2. Rock classes -- 5.4.3. rock cycle -- 5.5. Mineral deposits -- 5.5.1. Formation of mineral deposits -- 5.5.2. Common forms of mineral deposits -- 5.5.3. distribution of base and precious metal deposits -- 5.6. Resources and reserves -- 5.7. Extracting value from the crust -- 5.7.1. Physical separation -- 5.7.2. Chemical separation -- 5.7.3. effect of breakage on the surface area of materials -- 5.7.4. By-products and co-products -- 5.7.5. efficiency of extraction -- 5.8. References -- 5.9. Useful sources of information -- 6. minerals industry -- 6.1. Mineral commodities -- 6.1.1. Traded commodities -- 6.1.2. Mineral commodity statistics -- 6.1.3. Reserves and resources of mineral commodities -- 6.2. How mineral commodities are traded -- 6.2.1. Mineral and metal markets -- 6.2.2. complexities of trading mineral commodities -- 6.3. economic value of mineral commodities -- 6.3.1. Hotelling's rule -- 6.3.2. Limitations of Hotelling's rule -- 6.4. mining project cycle -- 6.4.1. Exploration -- 6.4.2. Evaluation and development -- 6.4.3. Design, construction and commissioning -- 6.4.4. Production -- 6.4.5. Project decline and closure, remediation and restoration -- 6.5. nature of the minerals industry -- 6.5.1. Location -- 6.5.2. Hazardous nature -- 6.5.3. Size and structure -- 6.5.4. Minerals companies -- 6.5.5. Industry associations -- 6.5.6. Industry culture -- 6.5.7. Trends shaping the industry -- 6.6. economic and social impacts of mining -- 6.6.1. Mining as a route to development -- 6.6.2. resources curse -- 6.6.3. Artisanal and small-scale mining -- 6.7. minerals industry and sustainable development -- 6.7.1. Industry developments and formation of the ICMM -- 6.7.2. Sustainability reporting and sustainability indicators -- 6.7.3. Status of the industry -- 6.8. References -- 6.9. Useful sources of information -- 7. Producing ores and concentrates -- 7.1. Extracting rock from the crust -- 7.1.1. Surface mining -- 7.1.2. Underground mining -- 7.1.3. Solution mining -- 7.2. Beneficiating mined material -- 7.2.1. Size reduction -- 7.2.2. Separating particles -- 7.2.3. Separating solids from water -- 7.2.4. Agglomerating particles -- 7.3. Examples of mineral beneficiation flowsheets -- 7.3.1. Mineral sand concentrates -- 7.3.2. Production of iron ore fines and lump -- 7.3.3. Base metal sulfide concentrates -- 7.4. References -- 7.5. Useful sources of information -- 8. Producing metals and manufactured mineral products -- 8.1. Theoretical considerations -- 8.2. Metals -- 8.2.1. principles of metal extraction -- 8.2.2. Metallurgical reactors -- 8.2.3. Smelting -- 8.2.4. Leaching -- 8.2.5. stages in the extraction of a metal -- 8.2.6. production of some important metals -- 8.3. Cement and concrete -- 8.4. Glass -- 8.5. Mineral fertilisers -- 8.6. Commodity ceramics -- 8.7. References -- 8.8. Useful sources of information -- 9. Energy consumption in primary production -- 9.1. Direct and indirect energy and gross energy requirement -- 9.2. Embodied energy -- 9.2.1. Calculation of embodied energy -- 9.2.2. Values of embodied energy -- 9.3. Embodied energy and global warming potential -- 9.3.1. Hydrometallurgy versus pyrometallurgy -- 9.3.2. Global greenhouse gas production -- 9.3.3. Impact of the source of electricity used -- 9.4. effect of declining ore grade and liberation size on energy consumption -- 9.5. lower limits of energy consumption -- 9.5.1. Energy required for moving materials -- 9.5.2. Energy required for sorting and separating material -- 9.5.3. Energy required for chemical processing -- 9.6. Energy sustainability indicators and reporting -- 9.7. References -- 10. role of water in primary production -- 10.1. Global water resources -- 10.2. Water in the minerals industry -- 10.3. embodied water content of metals -- 10.4. Water sustainability indicators and reporting -- 10.5. References -- 10.6. Useful sources of information -- 11. Wastes from primary production -- 11.1. Wastes and their origin -- 11.2. Solid wastes -- 11.2.1. Calculation of the quantities of solid wastes -- 11.2.2. Quantities produced -- 11.3. Liquid wastes -- 11.3.1. Waste water -- 11.3.2. Acid and metalliferous drainage -- 11.4. Gaseous wastes -- 11.4.1. types of gases produced in smelting -- 11.4.2. quantities of gas produced in smelting -- 11.5. impact of wastes on humans and the environment -- 11.5.1. Examples of the impacts of mining wastes -- 11.5.2. Toxicity -- 11.5.3. Bioavailability -- 11.6. international regulation of wastes -- 11.6.1. Basel Convention -- 11.6.2. REACH and the European Chemicals Agency -- 11.6.3. Implications of the Basel Convention and REACH -- 11.7. References -- 11.8. Useful sources of information -- 12. Management of wastes from primary production -- 12.1. Management of solid wastes -- 12.1.1. Waste rock -- 12.1.2. Tailings -- 12.1.3. Residues from leaching operations and water treatment -- 12.1.4. Slags -- 12.2. Management of liquid wastes -- 12.2.1. Technologies for water treatment -- 12.2.2. Management of cyanide solutions -- 12.2.3. Management of AMD -- 12.3. Gaseous wastes -- 12.3.1. Gas cooling and heat recovery -- 12.3.2. Gas cleaning -- 12.3.3. Sulfur dioxide removal -- 12.4. Waste, effluent and emission sustainability indicators -- 12.5. References -- 12.6. Useful sources of information -- 13. Secondary materials and recycling -- 13.1. Options for end-of-life products -- 13.1.1. Recycling -- 13.1.2. Reuse -- 13.1.3. Remanufacturing -- 13.2. Drivers of recycling, reuse and remanufacturing -- 13.3. benefits and limitations of recycling -- 13.4. Recycling terminology -- 13.5. Recovery, recycling and return rates for common materials -- 13.6. energy required for recycling -- 13.6.1. Gross Energy Requirement for recycling -- 13.6.2. effect of repeated recycling -- 13.7. effect of recycling on resource life -- 13.8. Recycling materials from simple products -- 13.8.1. Construction and demolition wastes -- 13.8.2. Glass -- 13.8.3. Metals -- 13.9. Recycling materials from complex products -- 13.9.1. Cars -- 13.9.2. Waste electrical and electronic equipment -- 13.10. Design for the Environment -- 13.11. References -- 13.12. Useful sources of information -- 14. future availability of minerals and metals -- 14.1. determinants of long-term supply -- 14.2. Potential sources of minerals -- 14.3. Crustal resources -- 14.3.1. distribution of the elements in the crust -- 14.3.2. mineralogical barrier -- 14.3.3. Hubbert's curve and the concept of peak minerals -- 14.3.4. Are many mineral deposits still to be discovered? -- 14.3.5. Crustal rocks as a source of scarce elements -- 14.4. Resources in seawater -- 14.5. Resources on the seabed -- 14.5.1. Deposits originating from land sources -- 14.5.2. Deposits originating from sources in ocean basins -- 14.5.3. Deposits originating from sources on continents and in ocean basins -- 14.5.4. Recovery and processing of deep ocean deposits -- 14.5.5. Legal aspects: the Convention of the Sea --.
- Contents note continued: 14.6. Summary and conclusions -- 14.7. References -- 14.8. Useful sources of information -- 15. future demand for minerals and metals -- 15.1. determinants of long-term demand -- 15.2. Projections of the demand for mineral commodities -- 15.3. Materials and technological substitution -- 15.3.1. Substitution limits and constraints -- 15.4. Dematerialisation -- 15.4.1. Intensity-of-use -- 15.4.2. Drivers of dematerialisation -- 15.4.3. Counters to dematerialisation -- 15.4.4. case study -- 15.5. IPAT equation -- 15.6. Summary and conclusions -- 15.7. References -- 15.8. Useful sources of information -- 16. Towards zero waste -- 16.1. waste hierarchy -- 16.2. Reducing and eliminating wastes -- 16.3. Cleaner production -- 16.4. Wastes as raw materials -- 16.5. Waste reduction through process re-engineering -- 16.5.1. Examples of flowsheet simplification -- 16.5.2. Examples of novel equipment -- 16.5.3. Examples of novel processing conditions -- 16.6. Industrial ecology -- 16.7. Making it happen -- 16.8. References -- 16.9. Useful sources of information -- 17. Towards sustainability -- 17.1. Closing the materials cycle -- 17.1.1. ICCM stewardship model -- 17.1.2. Five Winds stewardship model -- 17.1.3. integrated strategy for the minerals and metals sector -- 17.1.4. Drivers of stewardship -- 17.2. Market- and policy-based approaches to transitioning to sustainability -- 17.3. What does the future hold? -- 17.3.1. `Great Transition' scenario -- 17.3.2. World Business Council for Sustainable Development scenario -- 17.4. Summary and conclusions -- 17.5. References -- Appendix I note on units and quantities -- International System of Units -- Scientific notation, significant figures and order of magnitude -- Appendix II review of some important scientific concepts -- II.1. nature of matter -- II.2. Conservation of matter -- II.3. Energy, heat and the laws of thermodynamics -- II.4. Electromagnetic radiation -- II.5. Heat transfer -- Appendix III GRI Sustainability Indicators -- Appendix IV Processing routes for extraction of common metals from their ores.
Ämnesord
- Conservation of natural resources. (LCSH)
- Sustainability. (LCSH)
- Mines and mineral resources -- Management. (LCSH)
- Mineral industries -- Management. (LCSH)
Klassifikation
- TN274 (LCC)
- 549 (DDC)
- Udua (kssb/8 (machine generated))
Inställningar
Hjälp
Titeln finns på 3 bibliotek.
Ange som favoritAnge som favorit
-
Uppsala universitetsbibliotek, Digitala biblioteket (Udix)Ange som favorit
-
Mina lånLåna/reservera
-
-
Läs hela (Tillgänglig för användare inom Uppsala universitet) (fulltext) (Ebook Central Perpetual, DDA and Subscription Titles)
Öppettider, adress m.m.
Ange som favorit